🏳️‍🌈 Samedi 17 mai: Journée internationale contre l'homophobie, la transphobie et la biphobie️‍️‍ 🏳️‍🌈

Nouvelles dates de formation en direct: Détails sur la page d'accueil !

Magic Scroll Icon Le grimoire informatique Magic Scroll Icon

Données massives, apprentissage automatique et éthique

2,216 mots - Temps de lecture estimé: 12 minutes

🌘 Introduction

En 2018, j'ai fait une présentation qui couvre un large spectre du monde des données massives.

Voilà pour vous tous, une seconde présentation en points de forme tirée d'une conférence que j'ai donnée.
L'enregistrement était horrible alors, il n'a pas été conservé.

🌘 Comment sont entreposées les données massives ?

🌘 Bases de données analytiques

Source

🌘 Les bases de données de documents

Source

🌘 Les graphes

Source

🌘 Les lacs de données

🌘 On fait quoi de ces données massives non-structurées ?

🌘 Journaux applicatifs

Utilisation d'expressions régulières.

Géo-localisation

🌘 Textes et voix

🌘 Analyse et traitement du langage naturel

🌘 Encodage

🌘 Images et vidéos

🌘 Filtres convolutionnels

🌘

Source

🌘 Palettes de couleurs

colour analysis of google images
Source: Steven Kay CC BY 2.0

🌘 Identification d'objets

Illustration of the bag of words model for images along with the images clustering procedure
Source

🌘 Description textuelle

models/research/im2txt at master tensorflow/models GitHub
Source
[@vinyals2017show;@sivic2009efficient]

🌘 Quels algorithmes d'apprentissage automatique sont utilisés sur ces données massives ?

🌘 Regroupement (Clustering)

Iris flower data set, clustered using k means (left) and true species in the data set (right)

Source

🌘 Modèles linéaires (GLM)

Source

🌘 Arbres de décisions

Example diagram for decision tree. Picture created and uploaded by author.

Source

🌘 Réseaux de neurones

Source

🌘 Analyse de réseaux sociaux

🌘 Traversée de graphes

Trouver le chemin le plus court répondant à une ou plusieurs contraintes.

A non-verbal description of three graph traversal algorithms: randomly, depth-first search, and breadth-first search.
Source

🌘 Segmentation de graphes

Séparer un graphe en plusieurs sous-graphes en coupant le moins de liens possible.

Graph_comparison

🌘 Systèmes de recommendation

🌘 Filtrage collaboratif

Exemple: Easyrec
Easyrec_architecture
Source

🌘 Quelles sont les limites actuelles des algorithmes d'apprentissage automatique ?

🌘 Quartet d'Anscombe

[Source](Source: https://en.wikipedia.org/wiki/Anscombe's_quartet])

🌘 Le biais systémique et la discrimination

Il est de plus en plus facile de cacher la discrimination au travers d'algorithmes. Il suffit d'entraîner l'algorithme sur des données basées sur des décisions passées pour y inclure tous les biais des personnes qui ont pris ces décisions.

🌘 Les données en arrière-plan

67. Ribeiro, Singh and Guestrin , Why Should I Trust You Explaining the Predictions of Any Classifier , In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.

[@ribeiro2016should]

🌘 Comment vos données sont réellement utilisées ? La bonne façon

🌘 Prévenir la fraude

Airbnb Engineering & Data Science: Architecting a Machine Learning System for Risk

🌘 Éducation : Parcours de l'étudiant

🌘 Éducation : Adapter la pratique de l'enseignant

Much of our current educational system can be described as "memorize, regurgitate, and forget." Students learn to "study for the test. […] Computers are very good in storage, retention, and regurgitation."

Référence: Moursund, D.G. (2005, 2006). Brief introduction to educational implications of Artificial Intelligence. (CC BY-NC)

🌘 Le futur de l'éducation

Jack Ma on the future of education

🌘 Soins de santé

Les algorithmes d'apprentissage profond peuvent identifier des tumeurs cancéreuses dans l'imagerie médicale.

Ex: Meilleure détection du cancer du sein

Deep Learning System Improves Breast Cancer Detection

Source

Enjeu: il faut le consentement du patient pour partager les images.

🌘 Entretien préventif

Machine Learning for Predictive Maintenance

🌘 Comment les données massives sont réellement utilisées ? La mauvaise façon

🌘 Weapons of math destruction

Weapons of math destruction, which O’Neil refers to throughout the book as WMDs, are mathematical models or algorithms that claim to quantify important traits: teacher quality, recidivism risk, creditworthiness but have harmful outcomes and often reinforce inequality, keeping the poor poor and the rich rich.
Review: Weapons of Math Destruction

🌘 La bulle de confort

Systèmes de recommendations :

Segmentation de graphe :

🌘 La surveillance de masse

Les gouvernements utilisent le prétexte de la détection de nouveaux modèles de criminalité pour demander de plus en plus de données sur l'usage des moyens de communications par les citoyens.

the future-orientation increasingly severs surveillance from history and memory and the quest for pattern-discovery is used to justify unprecedented access to data

[@doi:10.1177/2053951714541861]

The NYPD is notorious for its intransigence on open records requests from the press and the public, particularly concerning documentation about the department’s extensive use of surveillance technology. In recent years, lawsuits have been filed to disclose information about the department’s network of surveillance cameras, its use of X-ray scanners in public, and the deployment of facial recognition technology

Transparency Advocates Win Release of NYPD “Predictive Policing” Documents

🌘 La prédiction des récidivistes

🌘 Les "Fake News"

Modern machine learning for natural language processing is able to do things like translate from one language to another, because everything it needs to know is in the sentence its processing - Ian Goodfellow, OpenAI

🌘 Bibliographie

Angles, Renzo, and Claudio Gutierrez. 2008. “Survey of Graph Database Models.” ACM Computing Surveys (CSUR) 40 (1): 1.

Anscombe, F. J. 1973. “Graphs in Statistical Analysis.” The American Statistician 27 (1): 17–21. https://doi.org/10.1080/00031305.1973.10478966.

Berners-Lee, Tim, James Hendler, and Ora Lassila. 2001. “The Semantic Web.” Scientific American 284 (5): 34–43.

Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008. “Bigtable: A Distributed Storage System for Structured Data.” ACM Transactions on Computer Systems (TOCS) 26 (2): 4.

El-Abbasy, Mohammed S, Ahmed Senouci, Tarek Zayed, Farid Mirahadi, and Laya Parvizsedghy. 2014. “Artificial Neural Network Models for Predicting Condition of Offshore Oil and Gas Pipelines.” Automation in Construction 45: 50–65.

Garcia, Mari Cruz, Miguel A Sanz-Bobi, and Javier del Pico. 2006. “SIMAP: Intelligent System for Predictive Maintenance: Application to the Health Condition Monitoring of a Windturbine Gearbox.” Computers in Industry 57 (6): 552–68.

Han, Jing, E Haihong, Guan Le, and Jian Du. 2011. “Survey on NoSQL Database.” In Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on, 363–66. IEEE.

Lyon, David. 2014. “Surveillance, Snowden, and Big Data: Capacities, Consequences, Critique.” Big Data & Society 1 (2): 2053951714541861. https://doi.org/10.1177/2053951714541861.

Manning, Christopher, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky. 2014. “The Stanford CoreNLP Natural Language Processing Toolkit.” In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 55–60.

Menk dos Santos, Alan. 2015. “A Hybrid Recommendation System Based on Human Curiosity.” In Proceedings of the 9th ACM Conference on Recommender Systems, 367–70. ACM.

Moniruzzaman, ABM, and Syed Akhter Hossain. 2013. “Nosql Database: New Era of Databases for Big Data Analytics-Classification, Characteristics and Comparison.” arXiv Preprint arXiv:1307.0191.

Nguyen, Tien T, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A Konstan. 2014. “Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity.” In Proceedings of the 23rd International Conference on World Wide Web, 677–86. ACM.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “Why Should i Trust You?: Explaining the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–44. ACM.

Sivic, Josef, and Andrew Zisserman. 2009. “Efficient Visual Search of Videos Cast as Text Retrieval.” IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (4): 591–606.

Terveen, Loren, and Will Hill. 2001. “Beyond Recommender Systems: Helping People Help Each Other.” HCI in the New Millennium 1 (2001): 487–509.

Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2017. “Show and Tell: Lessons Learned from the 2015 Mscoco Image Captioning Challenge.” IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (4): 652–63.

Yang, Diyi, Tanmay Sinha, David Adamson, and Carolyn Penstein Rosé. n.d. “Turn on, Tune in, Drop Out: Anticipating Student Dropouts in Massive Open Online Courses.” In.

Zhang, Lei, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. 2016. “Road Crack Detection Using Deep Convolutional Neural Network.” In Image Processing (ICIP), 2016 IEEE International Conference on, 3708–12. IEEE.

Abonne-toi au flux RSS pour ne rien manquer.

Étiquettes